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 

Abstract—In this work, we propose a pick-and-place 
benchmark to assess the manipulation capabilities of a robotic 
system. The benchmark is based on the Box and Blocks Test 
(BBT), a task utilized for decades by the rehabilitation 
community to assess unilateral gross manual dexterity in 
humans. We propose three robot benchmarking protocols in this 
work that hold true to the spirit of the original clinical tests—the 
Modified-BBT, the Targeted-BBT, and the Standard-BBT. 
These protocols can be implemented by the greater robotics 
research community, as the physical BBT setup has been widely 
distributed with the Yale-CMU-Berkeley (YCB) Object and 
Model Set. Difficulty of the three protocols increase sequentially, 
adding a new performance component at each level, and 
therefore aiming to assess various aspects of the system 
separately. Clinical task-time norms are summarized for able-
bodied human participants. We provide baselines for all three 
protocols with off-the-shelf planning and perception algorithms 
on a Barrett WAM and a Franka Emika Panda manipulator, 
and compare results with human performance.  

I. INTRODUCTION 

Enabling robots to work within, perceive, and manipulate 
their unstructured, human-made environment has motivated 
many decades of robotics research [1], [2].  Despite this 
longstanding research effort, there continues to be a vast 
ability gap between the tasks robots and humans are able to 
accomplish. This fact is perhaps most evident in the various 
robotic challenges within recent years, like the Amazon 
Picking Challenge (APC) [3], the DARPA Autonomous 
Robotic Manipulation (ARM) challenge [4], the Robot 
Grasping and Manipulation Competition 2016 [5], and the 
RoboCup@Home challenge [6], in which the robots can only 
demonstrate a tiny fraction of human dexterity, and require 
orders of magnitude more time to complete the same task. 

The robotics community is lacking the tools to assess the 
manipulation performance of a given system and draw 
meaningful comparisons, which prevents systematic analysis, 
and therefore progress in the field. Unlike research disciplines 
that can be primarily evaluated by data sets and simulations 
(e.g. algorithms in image segmentation [7], 3D object retrieval 

[8], [9],  object recognition [10], and SLAM [11]), robotic 
manipulation requires real-life experiments with physical 
objects and environments due to the difficulty of accurately 
simulating the contact phenomena. Nonetheless, in end-to-end 
task-oriented evaluations, such as those in the aforementioned 
challenges, it is difficult to evaluate individual components of 
the system (e.g. object recognition, object segmentation, 
motion planning, hardware design) and determine which 
component contributed to the success or failure of the task 
[12]. This is due to the holistic assessment and scoring of the 
performance with a high complexity task.  

In this work, we address this dearth of system evaluation in 
a standardized benchmark with protocols of increasing 
difficulty. By incrementally testing and challenging an 
additional system component between each protocol, namely, 
manipulator design, control, perception, and planning, we are 
able to evaluate various aspects of the system separately to a 
much greater extent and provide a general discussion of 
system limitations. Through this assessment, we enable 
investigators to objectively compare results for a more 
enlightened research discussion.  

Our work defines three benchmarking protocols that are 
inspired by the clinical Box and Blocks Tests (BBTs). The 
BBT has been long utilized by clinicians in the rehabilitation 
community for evaluating upper-limb gross manual dexterity 
in physically impaired individuals. As originally standardized 
by Mathiowetz in 1985 [13],  the standard test consists of two 
containers separated by a vertical barrier, with one container 
holding 150 colored wooden blocks. Within one minute, the 
participant must transfer as many single blocks as possible 
from the filled container to the empty container, ensuring that 
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one’s fingers cross the barrier. Due to the popularity of this 
test, normative data for healthy participants has been generated 
and is widely accepted for individuals in 19 age groups (ages 
8-94). Additional works have validated the repeatability of the 
norms [14], extended the age groups from the original study 
[15],  and even introduced added difficulties in order to asses 
precision dexterity (the modified box and blocks test [16], [17] 
and the targeted box and blocks test [18]). Able-bodied norms 
from these clinical variations provide inspiration and baseline 
comparisons for our proposed benchmarking protocols. 

In robotic benchmarks, objects and environments should be 
standardized to ensure the experiments are conducted in 
comparable conditions. We rigorously describe the 
experimental setup, provide step-by-step instructions and 
evaluation metrics, and use the objects from Yale-CMU-
Berkeley (YCB) Object and Model Set [12], which is widely 
available to the robotics research community. The proposed 
benchmarks follow very closely to the clinical BBTs, but differ 
in three ways as to conform to objects provided by the YCB 
Object Set: container geometries differ, the standard BBT only 
has 100 blocks, and the block template is smaller in order to fit 
into the bottom of the YCB container. All protocols are 
otherwise identical to their clinical counterpart.  

II. RELATED WORK 

In this section, we present BBTs in the literature, discuss 
the role of pick-and-place tasks in the literature, and give a 

summary of data sets and benchmarking efforts in the related 
field. 

A. The Box and Blocks Test 

The (standard) BBT has been utilized for evaluating upper 
limb manual dexterity in physically impaired individuals for 
several decades. Other tests have been proposed to evaluate 
similar measures, such as the Southampton Hand Assessment 
Procedure (SHAP) test [19], but are often more difficult to 
administer and can be expensive to purchase. As originally 
popularized by [13], the BBT study provided norms for able-
bodied individuals, ages 20-92 in 12 age groups (318 females 
and 310 males). Recorded metrics signified the number of 
blocks transferred within one minute of testing per individual, 
while distinguishing by age group, sex, and hand of 
dominance. Follow up work added norms for 7 additional age 
groups from able bodied individuals ages 6-19 (231 females, 
240 males), distinguishing by the same characteristics [15]. As 
to allow for a more meaningful comparison to these norms in 
robotics, weighted averages have been calculated for each age 
group by combining gender (female/male) and hand of 
dominance (right/left) categories from these two studies, 
presented in Table I, and represent the number of blocks 
transferred by each group within one minute.  

Two altered box and blocks tests have been introduced in 
the literature, the modified BBT (2012) and the targeted BBT 
(2017), to better examine the kinematic repeatability of upper-
limb trajectories. Healthy participant, normative data has been 
previously gathered for both altered tests (Table II and Table 
III) for 16 participants and 19 participants, respectively [17], 
[18]. The modified BBT assessment evaluated left-hand and 
right-hand execution times for right hand-dominant 
participants while standing and sitting. The targeted BBT 
assessment evaluated right hand transfer times for right-hand 
dominant participants. As the initial pose of the objects are 
fixed, these tests challenge precision arm and hand control of 
the user. 

B. The Pick-and-Place Task 

The BBT evaluation proposed in this work is a pick-and-
place task as defined by [20], a type of task that has historically 
been of high interest to the robotics community largely due to 
its culmination of various problems in robotics and its 
applications in the real world. Pick-and-place applications 
often appear in Activities of Daily Living (ADLs), or tasks that 
would be required for home-focused autonomous service 
robotics. Example activities are outlined in a recent survey of 
human object manipulation [21]. Moreover, this interest is 
further underscored by well-publicized robotics challenges, 
e.g. [4], [6], and is also of great interest to the e-commerce 
industry for automated sorting and order fulfillment [3].  

Though there is great interest in this type of task, efficient 
implementations have yet to be developed. Executions often 
suffer from being magnitudes slower compared to that of a 
human, and are less successful in completing the task. This can 
be attributed to several things, e.g. a subsystem contributing to 
a bottleneck or an inefficient integration of the subsystem. 
Increasing computational efficiency and efficacy of the 
subsystems becomes of high interest for effective task 
completion. For example, previous works have investigated 
accelerating grasp synthesis [22], simplifying control [23], 

TABLE I.            STANDARD BOX AND BLOCKS TEST NORMS FOR 

HEALTHY INDIVIDUALS [13], [15] 

Age 
Range 

# 
Male 

# 
Female 

Male 
Avg. 

Female 
Avg. 

Weighted 
Avg. 

6-7 26 33 52.55 56.05 54.51 
8-9 30 32 61.75 61.60 61.67 
10-11 43 40 67.15 68.80 67.95 
12-13 34 36 73.50 72.05 72.75 
14-15 34 34 75.60 73.75 74.68 
16-17 31 35 78.95 75.65 77.20 
18-19 33 30 79.55 76.95 78.31 
20-24 29 26 87.30 85.70 86.54 
25-29 27 27 84.55 83.45 84.00 
30-34 27 26 81.60 82.70 82.14 
35-39 25 25 80.85 84.15 82.50 
40-44 26 31 81.50 80.40 80.90 
45-49 28 25 76.35 80.20 78.17 
50-54 25 25 78.00 76.00 77.00 
55-59 21 25 74.50 74.15 74.31 
60-64 24 25 70.90 74.85 72.92 
65-69 27 28 67.90 71.65 69.81 
70-74 26 29 65.30 68.45 66.96 
75+ 25 26 62.15 64.30 63.25 
      

TABLE II.  MODIFIED BOX AND BLOCKS TEST NORMS FOR 16 

HEALTHY INDIVIDUALS (AGES 29.5 ± 8.9 YRS) [17] 

Measure Standing (s) Sitting (s) 
Right Hand Blocks 9.65 ± 0.86 9.70 ± 0.90 
Left Hand Blocks 10.36 ± 1.12 10.38 ± 1.18 
   

TABLE III.  TARGETED BOX AND BLOCKS TEST NORMS FOR 19 

HEALTHY INDIVIDUALS (AGES 29.9 ± 8.3 YRS) [18] 

Measure Standing (s) 
Right Hand Blocks 25.8 ± 5.14 
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[24], and even using suction cups or specifically tailored 
manipulators to speed up the task [3], [25].  The BBT 
benchmarks in this work attempt to increasingly challenge 
each of these potential bottlenecks, promoting enlightened 
discussion and standardized evaluation for comparison.  

C. Data Sets and Benchmarking 

Object and model sets for benchmarking have been 
proposed in various forms and of differing scopes in the 
literature, e.g. [3], [26]–[29]. However, the sets often lack 
critical information required to carry out accurate simulations 
– such as object textures, 3D object models, object inertial 
properties, or coefficients of friction. Due to the complexity of 
distributing physical objects, one project has attempted to 
make a shopping list of objects for researchers to purchase, but 
this list is currently outdated [28]. Objects for the APC are 
available for purchase, but there remains an added barrier to 
accurately setting up the test environment.  

Benchmarks in other applications that do not require 
physical objects have been significantly more successful, such 
as the creation of Imagenet [10] and the Princeton Shape 
Benchmark [9]. These datasets have become very large from 
collaboration with their associated communities. At its 
inception in 2009, Imagenet contained 3.2 million images and 
has since grown to over 14 million in just a decade. In few 

cases, benchmarking in physical systems has been proposed 
like that in Simultaneous Localization and Mapping (SLAM). 
In [30], a benchmark was proposed for indoor SLAM with 
physical robots by standardizing the environment and 
incorporating a reference robot for comparison between 
algorithms. Unlike these aforementioned benchmarks, there 
remains great merit in executing tasks in a physical 
environment, as execution in a simulation typically lacks 
reciprocity to the real world where robots much surely work 
[31]. For this reason, we select the use of the YCB set, an 
invaluable tool for creating physical benchmarking protocols 
for the robotics community, as the object set has been 
distributed to over 120 research groups at the time of writing. 
Previously, an end-to-end benchmark using this object set has 
been proposed for assessing the picking performance of a 
robot from a standard shelf [32]. 

III. BENCHMARKING PROTOCOLS 

Three clinically-inspired benchmarking protocols based on 
the modified, targeted, and standard BBTs are described in this 
section (full instructions of the experimental procedure and 
scoring criteria are provided as a multimedia attachment). In 
the first benchmark, the Modified-BBT (M-BBT) [16], the 
goal is for the robot to transfer 16 identically oriented blocks 
from one container to the other over a separating barrier 
(container lid) in minimal time. This task mainly challenges 
manipulator design and grasping. The second protocol, the 
Targeted-BBT (T-BBT) [18], begins similarly to the M-BBT 
but requires precision placement of the block on the other side 
of the barrier. This task further challenges the accuracy and 
control of the end effector and of the manipulator to ensure the 
dynamics associated with object placement do not incur 
undesirable object movement upon release. The third and final 
protocol mimics that of the Standard-BBT (S-BBT) [13], 
where the task is to transfer as many randomly configured 
blocks as possible (out of 100) across the barrier in minimal 
time. There are two variations of this third protocol, the first is 
timed for one minute, as to allow for comparison to the clinical 
evaluation, and the second is untimed. This final protocol 
further challenges perception and planning, as object 
segmentation and grasp synthesis in cluttered environments 
remain difficult problems in robotics.  

The physical setup of all non-manipulated objects is 
identical for all three protocols (YCB Obj. #68, 69) [12]. Start  

 

 

Fig. 2. (Left) M-BBT and T-BBT–block templates are affixed to the bottom of each container and 16 colored blocks (4 colors) are placed 
according to the template. (Right) S-BBT–100 blocks are placed randomly inside of the start container with random color distributions.  
 

TABLE IV.  SUMMARY OF METRICS TO REPORT 

Metric Description 

Score 

(M-BBT) A point is awarded if the correct block in 
order is successfully transferred to the goal container 
(T-BBT) A point is awarded if the correct block is 
successfully transferred to the goal container in the 
correct order and in the correct target location 
(S-BBT) A point is awarded for every transfer that 
consists of one or more blocks 

Blocks Picked 
(S-BBT only) Total number of blocks transferred to 
the target bin, greater than ‘score’ with picks of more 
than one block 

Pick Attempts 
(S-BBT only) Number of times the end effector tried 
to pick a block 

End Effector 
Distance (m) 

Distance traveled by the end effector during execution 

Planning 
Time (s) 

Amount of time used in motion and grasp planning 

Execution 
Time (s) 

Amount of time the manipulator or end effector is in 
motion 

Total Time (s) Amount of time used to complete the entire task 
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and goal containers are positioned on a support surface in front 
of the manipulator, close enough that the entire volume of the 
bin is reachable. Relative location of the containers in front of 
the robot is left up to the user, but the containers and the barrier 
lid must be within the same relative configuration as depicted 
in Fig. 2. That is, the two containers are pushed together 
length-wise with one container’s lid acting as a separating 
barrier. Blocks (YCB Obj. #70) [12] are placed inside of one 
of the containers and are oriented according to the specific 
benchmarking protocol being tested. The determination of 
which bin is filled (start container) and which bin is empty 
(goal container), is left up to the user. For all protocols, the end 
effector must start in a position outside of either container.  

An overarching goal of the proposed benchmarks is to 
evaluate all potential implementations for general pick-and-
place tasks with a standardized test. Therefore, hardware and 
software implementations used in execution are not restricted 
in any way—types of manipulators, end effectors, and sensing 
modalities are free to be determined by the user. However, 
alteration of physical objects provided in the YCB set is 
prohibited. This includes a restriction on changing colors, 
textures, or weights of the blocks or containers. Additionally, 
markers cannot be placed on any of the blocks, but may be 
placed on the container for pose recognition. Container 
position and orientation can either be determined a priori or 
during execution. The bins must remain in the same 
configuration during the entirety of the task and cannot be 
moved purposefully for object reorientation. If the center of 
the bin moves more than 2.54��, or the width of a cube, from 
the original starting position, or the bin rotates more than 10° 
about the center of the container, the task must be restarted and 
the score for that task execution is zero.  

Two mirrored templates, one for the left container and one 
for the right container, are provided for the M-BBT and the T-
BBT protocols (provided as a multimedia attachment). Each 
template has sixteen 3.2�� � 3.2�� numbered target block 
locations oriented in groups of four in a row (Fig. 2). Rows are 
separated by 2�� from one another. The template is enclosed 
by a rounded rectangle mimicking the shape of the container’s 
bottom. Templates are affixed to the bottom of the container 
during execution. To ensure the template is appropriately 
placed, block 1 should be the outermost and furthest block 
target location from the manipulator. 

Specific scoring rules differ between all three protocols. In 
general, for Protocols I and III that do not require precision 
object placement, a successful transfer is characterized 
similarly to [13] and requires that the object fully reaches onto 
the other side of the barrier before dropping into the goal 
container, i.e. blocks cannot be thrown over the barrier but can 
be released from any elevation above the goal container. 
Scores are not penalized if blocks bounce out of the goal 
container after release, but still count as a single point. These 
rules are in-line with the clinical protocol. 

Each task protocol should be completed consecutively at a 
minimum of five times as to allow for a general understanding 
of the system’s robustness. Failed tasks, as defined 
individually for each protocol, result in a score of zero for that 
execution. In addition to the score for each protocol, the 
amount of time in seconds used in planning, in execution, and 
in total needs to be reported. Time dedicated to perception and 

decision making should constitute the difference of the total 
time with execution time and planning time. The total distance 
that the end-effector traveled in meters during execution (most 
distal link of the manipulator) must also be recorded. A 
summary of reported metrics is provided in Table IV.  

A.  Protocol I: Modified - Box and Blocks Test (M-BBT) 

The first protocol, the Modified-BBT (M-BBT) [16], 
simplifies the perception, planning, and control problem to 
focus on manipulator design and execution speed. A total of 
sixteen colored blocks, consisting of four different colors 
determined by the user, are placed according to the provided 
template in either the left or right container. Blocks must start 
inside of the designated starting locations and blocks of the 
same color must be placed in the same row (Fig. 2) 

 The goal for this evaluation is to move all sixteen blocks 
from one bin to the other in the correct order and in minimal 
time. Blocks must be transferred one at a time, starting with 
block 1 and ending with block 16. Blocks do not have a target 
location inside of the goal container. If neighboring blocks are 
perturbed by the end effector during execution, the task can be 
continued as long as the same order of blocks are picked as 
defined by the beginning of the task. If a pick is missed, the 
system must continue to the next block. In cases where the start 
container moves more than 2.54��, two blocks are picked at 
once, or the wrong picking order is executed, the execution 
receives a score of 0. The maximum score for this protocol is 
16 and occurs when all blocks are transferred in the correct 
order.  

B.  Protocol II: Targeted - Box and Blocks Test (T-BBT) 

The second protocol, the Targeted-BBT (T-BBT) [18], 
builds off of the M-BBT as to require dynamic placement 
control of the object, further challenging the control of the 
manipulator. The task environment is setup similarly to 
Protocol I, but now requires that each block is placed within a 
specific target location. In minimal time the goal is to transfer 
each block, in order from 1-16, from the start container to the 
goal container by matching the pick location number with the 
place location number, and within the 3.2�� � 3.2�� target 
location. If neighboring blocks during the pick are knocked by 
the end effector during execution, the task can be continued as 
long as blocks are picked in the same order as defined by the 
beginning of the task. If a pick is missed, the system must 
continue to the next block, and therefore the target location for 
that block in the target bin should remain empty. 

Block placement and control becomes pivotal for scoring 
points. Once a block is picked, the manipulator must complete 
placement of that block before moving on to the next pick. The 
block can either be directly placed by the end effector or can 
be placed into the goal container and slid into the desired 
position using environmental affordances. Once another block 
is picked, the user can no longer manipulate already placed 
blocks. If other blocks are perturbed during placement of a 
single block, the pose of those perturbed blocks cannot be 
deliberately changed afterwards. Points are awarded at the end 
of the task, and signify that a corresponding start location and 
goal location match and that the block is completely inside of 
the target location. As before, in cases where the start container 
moves more than 2.54��, two blocks are picked at once, or 
the wrong picking order is executed, the task receives a score 
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of 0. The maximum score for this protocol is 16 and occurs 
when all blocks were placed inside of the target locations in 
the correct order.  

C.  Protocol III: Standard - Box and Blocks Test (S-BBT) 

The third protocol, the Standard-BBT (S-BBT) has two 
parts and presents additional difficulties in perception, since 
objects must be segmented in an occluded environment, and 
motion/grasp planning, as the manipulator must work in a 
cluttered environment. This protocol requires that one bin, the 
start container, is filled with all 100 colored blocks of an even 
color distribution throughout the container. This can be 
achieved by placing the lid on the container after filling and 
shaking the container. Inside of the container, four blocks of 
the same color should not be adjacently touching one another. 
Moreover, due to the size of the container and the total number 
of blocks used in this protocol, there should not exist a stack 
of blocks in the box that is more than two objects high.  

This protocol has two tasks, the first is timed for one 
minute (Protocol IIIa) and the second is untimed (Protocol 
IIIb). In both tasks, the goal is for the user to transfer as many 
blocks as possible across the barrier and into the goal container 
in minimal time. Picks of more than one block only count as a 
single point. The user may find strategy in initially transferring 
more than one block in the beginning of the task to mitigate 
clutter, but this also limits the total number of points the user 
can score at the end of the task. In the one-minute timed task, 
if the manipulator has a successful pick once time expires, a 
transfer can be recorded as a point. 

The untimed task, Protocol IIIb, presents interesting 
problems in motion planning, grasp planning, and control. 
Once the top layer of blocks is removed, the remaining layer 
typically lacks gaps in which for finger insertion (Fig. 6). Once 
a finger is inserted and a grasp is acquired, the planner must 
then account for other blocks in the bin, as collision with these 
objects will likely perturb the container undesirably. The end 
of the task is determined by the user, which likely occurs when 
the planner can no longer plan a grasp or all blocks are 
removed from the container. As with all protocols, if the 
container moves beyond its allotted translational and rotational 
threshold, the test fails with a score of 0. The maximum score 
for this protocol is 100.  

IV. BASELINE IMPLEMENTATIONS 

All three protocols were attempted with two different 
robotic systems using off-the-shelf planning and perception 
algorithms to determine baseline results. In the first setup, an 
underactuated Yale Openhand Model T42 [33] (pivot-flexure 
model) powered by two Dynamixel RX-28 actuators was 
affixed to a Barrett WAM manipulator. A support surface 
(60cm x 70cm) was placed 12cm directly in front of the 
manipulator. The BBT setup was placed in the center of the 
support surface (Fig. 1, 3). A Microsoft Kinect was mounted 
overhead providing a point cloud of the environment. 
Geometric collision constraints were configured and velocity 
control motion planning was achieved with a RRT-Connect 
planner [34] in a MoveIt! environment. Geometric container 
and barrier object models were created to define the collisions 
within the environment (provided as multimedia attachments). 
The point cloud was segmented such that only blocks inside of 
the filled container were available (Fig. 3). Block position 
estimation was achieved through the use of a KMeans++ 
algorithm subject to the location and color of the points. After 
each pick, the number of specified clusters was reduced by one 
and the object position estimations were recomputed. The 
system determined on which block to approach by either order 
(protocols 1 and 2) or height (protocols 3a and 3b). The motion 
planner then computed a trajectory to place the fingers directly 
above the desired block for grasping. Additional waypoints 
were added for precision pick, which were located directly 
above the block at increments of 5cm. 

The second system was a Franka Emika Panda (Fig. 4). 
The standard gripper was modified such that its fingers were 
extended by 140 mm using 3D printed parts, since the gripper 
itself was too wide to fit into the container. Even though the 
printed parts provide some level of compliance to the gripper, 
it is still quite rigid compared to the Model T42 gripper used 
in the first setup. Again, different from the first setup, an eye-
in-hand system was used with an Intel Realsense D435i depth 
sensor mounted at the end effector, right above the gripper 
base. The two containers were placed 10cm in front of the 
robot. The point cloud data was transformed into the robot 
frame and is segmented using an off the shelf Euclidian cluster 
extraction algorithm from the Point Cloud Library. Centroids 
for each of the blocks were computed by averaging the point 
cloud data. MoveIt! was utilized and occlusions were defined 

 
 

Fig. 3. Geometric constraints used for motion planning on a 
Barrett WAM manipulator. The gray arm (right) is the current 
state and the green arm (left) is evaluating collisions. Blocks 
inside of the container are visualized as a point cloud.  

 

 
 

Fig. 4. Franka Emika Panda setup with adapted fingertips.  
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in the same way as the first setup. The trajectories were 
generated in Cartesian space to prevent undesired contact with 
the blocks other than the target block.  

Each protocol was evaluated with five consecutive 
executions for both systems as presented in Table V and Table 
VI, and Fig. 5. 

A.  The Modified Box and Blocks Test Baseline 

Protocol I was implemented on the specified setups. When 
using the WAM setup, all 16 blocks were successfully 
transferred over the barrier in the correct order in each of the 5 
executions. In two executions, the fingers undesirably 
interacted with neighboring blocks, moving the neighbors less 
than 2��, but did not provide a large enough perturbation to 
affect the system. While the planning time varied significantly 
between executions with an average time of 51.66 ± 9.71s, the 
manipulator’s execution time was similar for each trial. This 
variation in planning time can be attributed to the random 
search implemented in the motion planner. 

During the Panda executions, similar undesired contacts 
occurred with the blocks neighboring the target block. In the 
second execution, the arm got into joint singularities and the 
execution terminated without attempting to pick all the blocks. 
This problem is due to trying to achieve a fast cartesian space 
planner, and not checking the joint constraints along the 
trajectory. Nevertheless, this setup was not as successful as the 
WAM-Model T42 setup for recovering from these situations 
due to the rigidity of the gripper. Here, we see the advantage 
of using compliant grippers in compensating for uncertainties 
during the picking operation.  

B.  The Targeted Box and Blocks Test Baseline 

The targeted BBT requires the system to precisely place 
the blocks after each pick, considering the dynamics of block 
placement. In this test, the WAM setup scored very low 
compared to the first protocol (1.8 ± 1.48 blocks). This is 
mainly due to the lack of precision of the compliant hand on a 
low-impedance manipulator, which resulted in unpredictable 

TABLE V.            WAM BASELINE EXECUTION SCORES FOR ALL THREE BOX AND BLOCKS PROTOCOLS  

 

TABLE VI.  PANDA BASELINE EXECUTION SCORES FOR ALL THREE BOX AND BLOCKS PROTOCOLS 

S core Di st. (m ) Plan n in g (s ) Exe cu tion  (s) Total  (s ) S core B lock s  Pi ck e d Pick  Att. Dis t. (m ) Plan n in g (s ) Exe cu tion  (s ) Total  (s)

1 16 31.82 64.97 172.87 256.98 1 5 8 5 8.48 3.06 44.26 60

2 16 28.29 41.63 180.18 239.79 2 5 7 5 7.77 3.53 54.74 60

3 16 27.19 61.82 173.21 253.97 3 4 7 5 11.02 3.14 47.87 60

4 16 29.59 45.32 170.25 234.07 4 5 6 5 9.2 7.11 44.04 60

5 16 28.07 44.59 168.93 231.97 5 5 9 5 7.59 4.71 55.09 60

Avg 16.00 28.99 51.66 173.09 243.36 Avg 4.80 7.40 5.00 8.81 4.31 49.29 60.00

Std 0.00 1.61 9.71 3.89 10.26 Std 0.40 1.02 0.00 1.24 1.52 4.86 0.00

1 2 42.3 41.27 221.95 274.21 1 36 61 52 100.97 159.12 629.81 1024.27

2 2 44.12 59.89 224.47 295.37 2 30 67 43 88.23 125 505.6 824.21

3 4 44.42 48.26 217.6 227 3 33 58 40 79.26 116.04 492.63 783.13

4 1 43.32 45.47 221.86 279.81 4 31 53 45 84.81 116.97 531.36 843.02

5 0 43.57 52.48 222.81 283.24 5 32 62 54 111.12 164.19 662.15 1084.5

Avg 1.80 43.54 49.47 221.74 281.90 Avg 32.40 60.20 46.80 92.99 136.26 564.31 911.83

Std 1.48 6.71 7.11 2.53 8.23 Std 2.30 5.17 5.97 12.95 23.51 76.70 133.64

Protocol  II: Targe te d B B T Protocol  IIIb: Un tim e d S tan dard B B T

Protocol  I: Modi fi e d B B T Protocol  IIIa: Tim e d S tan dard B B T

S core Di s t. (m ) Plan n in g (s ) Exe cu tion  (s ) Total  (s ) S core B lock s  Pi ck e d Pick  Att. Dis t. (m ) Pl an n i n g (s ) Exe cu ti on  (s ) Total  (s )

1 16 33.16 7.75 205.7 245.04 1 3 3 4 10.89 1.74 50.53 60

2 11 22.13 6.48 189.86 221.29 2 2 2 4 8.74 1.88 50.15 60

3 16 29.97 8.15 214.6 254.87 3 3 3 4 6.35 1.96 48.27 60

4 15 34.43 8.05 237.44 277.81 4 4 4 5 7.79 1.83 50.97 60

5 14 34.39 6.8 206.68 240.69 5 2 4 4 7.43 1.95 49.23 60

Avg 14.40 30.82 7.45 210.86 247.94 Avg 2.80 3.20 4.20 8.24 1.87 49.83 60.00

St d 2.07 5.18 0.75 17.36 20.68 St d 0.80 0.83 0.40 1.71 0.09 1.08 0.00

1 14 50.9 9.3 301.2 340.5 1 9 9 14 28.9 6.83 176.15 215.06

2 13 51.4 10.2 286.1 327.9 2 11 11 33 68.165 15.57 475.39 556.8

3 12 39.8 8.3 240 274.2 3 6 6 14 20.48 13.7 193.02 233.12

4 13 36.7 9.5 267.4 306.3 4 6 6 11 26.65 8.2 254.83 296.14

5 13 41.4 8.2 251.5 286.7 5 6 6 7 15.538 3.96 114.25 166.49

Avg 13.00 44.00 9.10 269.31 307.10 Avg 7.60 7.60 8.60 31.95 9.65 248.73 293.52

St d 0.70 6.70 0.80 24.80 27.50 St d 2.30 2.30 3.71 20.91 4.84 132.94 154.32

Protocol  I: Modi fi e d B B T

Protocol  II: Targe te d B B T

Protocol  IIIa: Tim e d S tan dard B B T

Protocol  IIIb: Un tim e d S tan dard B B T
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object motion during release especially if one finger lost 
contact before the other. Comparatively, the Panda setup 
scored much higher (13 ± 0.7 blocks), taking advantage of the 
precision evident in rigid manipulators and grippers. This 
outcome further underscores the compliance/rigidity tradeoff. 

C.  The Standard Box and Blocks Test Baseline 

The final protocol was evaluated in both timed and 
untimed settings for each of the manipulators. Within the 
allotted minute of the timed task, the WAM setup was 
successfully able to transfer 4.8 ± 0.4 blocks on average. Two-
block transfers were often executed in order to simplify 
planning. The average manipulator execution time (49.29 ± 
4.86s) was over twelve times greater than that of the time 
required to create a plan (4.39 ± 1.52s). Though now adding 
the difficulty of perceiving individual blocks, the planning 
involved in this task was easier than others, as the end effector 
was able to interact with neighboring blocks without penalty, 
since all blocks were picked from the top layer. End effector 
distances also deviated between executions, with an average 
of 8.81 ± 1.24m. This again is attributed to the random joint 
configuration search implemented by the planner. The 
performance of the WAM setup was better than that of the 
Panda, due to the advantage of using a compliant system in 
cluttered, unstructured environments.  

In the untimed evaluation, the performance difference 
between the WAM and Panda can be seen more clearly. Given 
enough time, the WAM setup picked significantly more blocks 
compared to the Panda setup due to compliance. In these tests, 
it was easily noted how difficult it was for the grippers to be 
accurately inserted into the bottom layer of the container while 
in a cluttered environment (Fig. 6). In the WAM setup, 

compliance was leveraged by devising an alternative strategy, 
which was to place the hand on top of a row of blocks and 
rotate the wrist before attempting to grasp. While rotating, the 
hand would continue to push into the container to insert the 
fingertip. This allowed the fingers to reconfigure the blocks 
before attempting to grasp.  

The untimed task on the WAM resulted in an average score 
of 32.4 ± 2.3 blocks picked over 911.8 ± 133.6s, far greater 
than what was achieved on the Panda (7.6 ± 2.3 blocks). 
Efficiency of the executions averaged 2.15 ± 0.27 blocks per 
minute, less than half that of the average of the timed test. This 
deviation can be attributed to the added planning and control 
difficulty with finger insertion into the bottom layer. Not all 
blocks were able to be picked out of the container, as only 60.2 
± 5.17 total blocks on average were transferred. Blocks not 
picked before termination were typically around the perimeter 
of the box, and a grasp plan was never found, as in Fig. 6. 

V. DISCUSSION 

The executions presented in Sec. IV serve as baseline 
implementations for all three benchmarking protocols. In all 
executions, we recognize a noticeable difference between 
execution time and planning time, where the execution speed 
of the manipulator often contributed to more than 70% of the 
time used. While increasing the speed of the manipulator may 
contribute to a faster execution time, we noticed that it 
decreased the accuracy of both manipulators, presenting a 
bottleneck in their designs.  

The execution time could have been decreased with an 
optimal trajectory planner, where the RRT-Connect 
architecture resulted in large end effector distance variations 
within the tasks. Off-the-shelf optimal trajectory planners were 
found to be too slow to use in execution. As in Fig. 5, the M-
BBT and timed S-BBT resulted in the highest scores per 
minute, which is consistent with the clinical trials. This is 
largely due to the fact that the T-BBT required time to 
precisely place the object while avoiding interactions with 
neighboring blocks. Additionally, the untimed S-BBT was 
difficult due to the finger insertion problem. Both, the T-BBT 
and the untimed S-BTT, would have benefited from more 
advanced control for increased precision. Similar results are 
portrayed in the scores per meter traveled comparison, as the 
majority of time used was dedicated to manipulator 
movement. As faster manipulators and planning algorithms 
are used, scores, and consequently these ratios, will increase.   

   
Fig. 6. (Left) Inserting a finger into the bottom layer of bin is 
difficult as there are few gaps for insertion. (Right) Blocks 
around the perimeter of the left start container are not transferred 
during the untimed task as a grasp plan was difficult to find.  

 

 
 
 

Fig. 5. (Top) Ratio of score to total task time for the WAM 
results. (Bottom) Ratio of score to end effector travel distance 
during execution for the WAM. Larger ratios typically signify 
higher task efficiency. Due to the nature of the task, the T-BBT 
and Untimed S-BBT require additional planning to ensure the 
block is picked (and placed) vertically to minimize interactions 
with neighboring blocks.  
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Due to similarities between the clinical and robot 
protocols, we are also able to generally compare task execution 
times between robots and humans. For example, in the WAM 
implementation with off-the-shelf components, the M-BBT 
was 24 times slower and the T-BBT was over 14 times slower 
than that of a human, from the age groups presented in [17], 
[18]. The timed S-BBT was over 11 times slower than that of 
a 6-7 year-old child, further underscoring the vast ability gap 
between a robot and a human in this task. 

VI. CONCLUSION 

In this work, we identify the inability to separate the 
components used in most task-level benchmarks and propose 
three standardized tasks based on the clinically utilized Box 
and Blocks Test. Benchmarking using the BBT is 
advantageous as not only has it been utilized for decades in the 
rehabilitation community to provide baseline able-bodied 
norms for comparison, but the physical setup is also included 
in the widely distributed YCB Object and Model set. Due to 
its significance in the rehabilitation community and its large 
distribution, it provides an accessible platform for evaluating 
the pick-and-place task. 

  Three protocols were designed by challenging an 
additional system component at each level. For each of the 
three benchmarks, we provide baseline results using off-the-
shelf planning and perception algorithms on a Barrett WAM 
and a Franka Emika Panda. We compare baseline results to 
human performance, finding that robot execution times are 
over ten slower. By evaluating these benchmarks with 
different manipulators, planners, control algorithms, and 
perception systems, the protocols provide objective measures 
for researchers in the robotics community to compare 
approaches. We recognize there is much work still to be 
completed in the field of manipulation and it is our hope that 
these tests provide insight for future evaluation towards 
human-level pick-and-place efficiency.  
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